Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.114
Filtrar
1.
Biofilm ; 7: 100195, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639000

RESUMO

Interspecies interactions within a biofilm community influence population dynamics and community structure, which in turn may affect the bacterial stress response to antimicrobials. This study was conducted to assess the impact of interactions between Kocuria salsicia and a three-species biofilm community (comprising Stenotrophomonas rhizophila, Bacillus licheniformis, and Microbacterium lacticum) on biofilm mass, the abundance of individual species, and their survival under a laboratory-scale cleaning and disinfection (C&D) regime. The presence of K. salsicia enhanced the cell numbers of all three species in pairwise interactions. The outcomes derived from summing up pairwise interactions did not accurately predict the bacterial population dynamics within communities of more than two species. In four-species biofilms, we observed the dominance of S. rhizophila and B. licheniformis, alongside a concurrent reduction in the cell counts of K. salsicia and M. lacticum. This pattern suggests that the underlying interactions are not purely non-transitive; instead, a more complex interplay results in the dominance of specific species. We observed that bacterial spatial organization and matrix production in different mixed-species combinations affected survival in response to C&D. Confocal microscopy analysis of spatial organization showed that S. rhizophila localized on the biofilm formed by B. licheniformis and M. lacticum, and S. rhizophila was more susceptible to C&D. Matrix production in B. licheniformis, evidenced by alterations in biofilm mass and by scanning electron microscopy, demonstrated its protective role against C&D, not only for this species itself, but also for neighbouring species. Our findings emphasise that various social interactions within a biofilm community not only affect bacterial population dynamics but also influence the biofilm community's response to C&D stress.

2.
Photodiagnosis Photodyn Ther ; : 104093, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641030

RESUMO

BACKGROUND: Dermatofibrosarcoma Protuberans (DFSP) is a rare, low-grade malignant tumor of the dermis with a high recurrence rate post-surgery. Current treatments, including surgery, radiotherapy, and targeted therapy, have limitations. Photodynamic therapy (PDT) with 5-aminolevulinic acid (5-ALA) is a promising non-invasive approach, but its efficacy in DFSP treatment remains underexplored. METHODS: This study aimed to evaluate the anti-tumor efficacy of 5-ALA PDT using an in vitro model derived from a recurrent DFSP patient. The cells were treated with varying concentrations of 5-ALA and exposed to red light, followed by assessments of cell viability, proliferation, apoptosis, migration, invasion, angiogenesis, and expression of DFSP-related genes and proteins. RESULTS: 5-ALA PDT significantly reduced DFSP cell viability in a dose-dependent manner and induced apoptosis. It also effectively inhibited cell proliferation, migration, and invasion, as well as suppressed angiogenic activity in conditioned media. Furthermore, 5-ALA PDT downregulated the expression of COL1A1 and PDGFRB, key genes in DFSP pathogenesis. CONCLUSIONS: The findings provide the first evidence of 5-ALA PDT's in vitro anti-tumor efficacy against DFSP, suggesting its potential as a novel therapeutic approach for DFSP. Further studies are warranted to explore the clinical utility of 5-ALA PDT in preventing DFSP recurrence.

3.
J Agric Food Chem ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635942

RESUMO

Squalene is a high-value antioxidant with many commercial applications. The use of microbial cell factories to produce squalene as an alternative to plant and animal extracts could meet increasing market demand. Yarrowia lipolytica is an excellent host for squalene production due to its high levels of acetyl-CoA and a hydrophobic environment. However, the need for precise and complicated gene editing has hindered the industrialization of this strain. Herein, the rapid construction of a strain with high squalene production was achieved by enhancing the homologous recombination efficiency in Y. lipolytica. First, remodeling of the homologous recombination efficiency resulted in a 10-fold increase in the homologous recombination rate. Next, the whole mevalonate pathway was integrated into the chromosome to enhance squalene production. Then, a higher level of squalene accumulation was achieved by increasing the level of acetyl coenzyme A and regulating the downstream steroid synthesis pathway. Finally, the squalene production reached 35 g/L after optimizing the fermentation conditions and performing a fed-batch culture in a 5 L jar fermenter. This is the highest squalene production ever reported to date by de novo biosynthesis without adding any inhibitors, paving a new path toward the industrial production of squalene and its downstream products.

4.
Nat Commun ; 15(1): 3113, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600097

RESUMO

Autophagy is a conserved, catabolic process essential for maintaining cellular homeostasis. Malfunctional autophagy contributes to neurodevelopmental and neurodegenerative diseases. However, the exact role and targets of autophagy in human neurons remain elusive. Here we report a systematic investigation of neuronal autophagy targets through integrated proteomics. Deep proteomic profiling of multiple autophagy-deficient lines of human induced neurons, mouse brains, and brain LC3-interactome reveals roles of neuronal autophagy in targeting proteins of multiple cellular organelles/pathways, including endoplasmic reticulum (ER), mitochondria, endosome, Golgi apparatus, synaptic vesicle (SV) for degradation. By combining phosphoproteomics and functional analysis in human and mouse neurons, we uncovered a function of neuronal autophagy in controlling cAMP-PKA and c-FOS-mediated neuronal activity through selective degradation of the protein kinase A - cAMP-binding regulatory (R)-subunit I (PKA-RI) complex. Lack of AKAP11 causes accumulation of the PKA-RI complex in the soma and neurites, demonstrating a constant clearance of PKA-RI complex through AKAP11-mediated degradation in neurons. Our study thus reveals the landscape of autophagy degradation in human neurons and identifies a physiological function of autophagy in controlling homeostasis of PKA-RI complex and specific PKA activity in neurons.


Assuntos
Neurônios , Proteômica , Camundongos , Animais , Humanos , Neurônios/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Autofagia/fisiologia , Homeostase
5.
Res Sq ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38645031

RESUMO

The intricate protein-chaperone network is vital for cellular function. Recent discoveries have unveiled the existence of specialized chaperone complexes called epichaperomes, protein assemblies orchestrating the reconfiguration of protein-protein interaction networks, enhancing cellular adaptability and proliferation. This study delves into the structural and regulatory aspects of epichaperomes, with a particular emphasis on the significance of post-translational modifications in shaping their formation and function. A central finding of this investigation is the identification of specific PTMs on HSP90, particularly at residues Ser226 and Ser255 situated within an intrinsically disordered region, as critical determinants in epichaperome assembly. Our data demonstrate that the phosphorylation of these serine residues enhances HSP90's interaction with other chaperones and co-chaperones, creating a microenvironment conducive to epichaperome formation. Furthermore, this study establishes a direct link between epichaperome function and cellular physiology, especially in contexts where robust proliferation and adaptive behavior are essential, such as cancer and stem cell maintenance. These findings not only provide mechanistic insights but also hold promise for the development of novel therapeutic strategies targeting chaperone complexes in diseases characterized by epichaperome dysregulation, bridging the gap between fundamental research and precision medicine.

6.
Mol Cell Biol ; 44(3): 87-102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38520226

RESUMO

Although LncRNA AA465934 expression is reduced in high glucose (HG)-treated podocytes, its role in HG-mediated podocyte injury and diabetic nephropathy (DN) remains unknown. Herein, we investigated the role of AA465934 in HG-mediated podocyte injury and DN using a spontaneous type II diabetic nephropathy (T2DN) model. The model was created by injecting AA465934 overexpressed adeno-associated virus (AAV) or control into mice. The levels of renal function, proteinuria, renal structural lesions, and podocyte apoptosis were then examined. Furthermore, AA465934 and autophagy levels, as well as tristetraprolin (TTP) and high mobility group box 1 (HMGB1) expression changes were detected. We also observed podocyte injury and the binding ability of TTP to E3 ligase proviral insertion in murine lymphomas 2 (PIM2), AA465934, or HMGB1. According to the results, AA465934 improved DN progression and podocyte damage in T2DN mice. In addition, AA465934 bound to TTP and inhibited its degradation by blocking TTP-PIM2 binding. Notably, TTP knock-down blocked the ameliorating effects of AA465934 and TTP bound HMGB1 mRNA, reducing its expression. Overexpression of HMGB1 inhibited the ability of AA465934 and TTP to improve podocyte injury. Furthermore, AA465934 bound TTP, inhibiting TTP-PIM2 binding, thereby suppressing TTP degradation, downregulating HMGB1, and reversing autophagy downregulation, ultimately alleviating HG-mediated podocyte injury and DN. Based on these findings, we deduced that the AA465934/TTP/HMGB1/autophagy axis could be a therapeutic avenue for managing podocyte injury and DN.


Assuntos
Nefropatias Diabéticas , Proteína HMGB1 , Podócitos , RNA Longo não Codificante , Animais , Camundongos , Apoptose , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Regulação para Baixo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Podócitos/metabolismo , Podócitos/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo
7.
Int J Biol Sci ; 20(5): 1927-1946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481801

RESUMO

The activation of NLRP3 inflammasome in microglia is critical for neuroinflammation during postoperative cognitive dysfunction (POCD) induced by sevoflurane. However, the molecular mechanism by which sevoflurane activates the NLRP3 inflammasome in microglia remains unclear. The cGAS-STING pathway is an evolutionarily conserved inflammatory defense mechanism. The role of the cGAS-STING pathway in sevoflurane-induced NLRP3 inflammasome-dependent neuroinflammation and the underlying mechanisms require further investigation. We found that prolonged anesthesia with sevoflurane induced cognitive dysfunction and triggered the neuroinflammation characterized by the activation of NLRP3 inflammasome in vivo. Interestingly, the cGAS-STING pathway was activated in the hippocampus of mice receiving sevoflurane. While the blockade of cGAS with RU.521 attenuated cognitive dysfunction and NLRP3 inflammasome activation in mice. In vitro, we found that sevoflurane treatment significantly activated the cGAS-STING pathway in microglia, while RU.521 pre-treatment robustly inhibited sevoflurane-induced NLRP3 inflammasome activation. Mechanistically, sevoflurane-induced mitochondrial fission in microglia and released mitochondrial DNA (mtDNA) into the cytoplasm, which could be abolished with Mdivi-1. Blocking the mtDNA release via the mPTP-VDAC channel inhibitor attenuated sevoflurane-induced mtDNA cytosolic escape and reduced cGAS-STING pathway activation in microglia, finally inhibiting the NLRP3 inflammasome activation. Therefore, regulating neuroinflammation by targeting the cGAS-STING pathway may provide a novel therapeutic target for POCD.


Assuntos
Inflamassomos , Complicações Cognitivas Pós-Operatórias , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , DNA Mitocondrial/metabolismo , Sevoflurano , Doenças Neuroinflamatórias , Nucleotidiltransferases/metabolismo
8.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473798

RESUMO

Ehrlichia chaffeensis infects human monocytes or macrophages and causes human monocytic ehrlichiosis (HME), an emerging life-threatening zoonosis. After internalization, E. chaffeensis resides in membrane-bound inclusions, E. chaffeensis-containing vesicles (ECVs), which have early endosome-like characteristics and fuse with early autophagosomes but not lysosomes, to evade host innate immune microbicidal mechanisms and obtain nutrients for bacterial intracellular growth. The mechanisms exploited by E. chaffeensis to modulate intracellular vesicle trafficking in host cells have not been comprehensively studied. Here, we demonstrate that E. chaffeensis type IV secretion system (T4SS) effector Etf-3 induces RAB15 upregulation in host cells and that RAB15, which is localized on ECVs, inhibits ECV fusion with lysosomes and induces autophagy. We found that E. chaffeensis infection upregulated RAB15 expression using qRT-PCR, and RAB15 was colocalized with E. chaffeensis using confocal microscopy. Silence of RAB15 using siRNA enhanced ECV maturation to late endosomes and fusion with lysosomes, as well as inhibited host cell autophagy. Overexpression of Etf-3 in host cells specifically induced RAB15 upregulation and autophagy. Our findings deepen the understanding of E. chaffeensis pathogenesis and adaptation in hosts as well as the function of RAB15 and facilitate the development of new therapeutics for HME.


Assuntos
Ehrlichia chaffeensis , Humanos , Regulação para Cima , Autofagossomos , Autofagia , Mecanismos de Defesa
9.
Huan Jing Ke Xue ; 45(3): 1749-1759, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471886

RESUMO

The large-scale construction of new districts has led to severe soil heavy metal pollution. Therefore, taking Fengdong New District as the target research area, the descriptive statistics of heavy metal content characteristics and Kriging interpolation analysis have been conducted, and the potential ecological risk index and information diffusion theory were further combined to create an information diffusion model based on risk assessment. Finally, the pollution degree, ecological risk, and risk occurrence probability of Pb, Cu, Cd, and Hg were discussed. The findings revealed that the average concentrations of the four heavy metals far exceeded the background value of soil heavy metals by a factor of 1.943 (Pb), 1.419 (Cu), 3.074 (Cd), and 3.567 (Hg), respectively. Moreover, the distribution of soil heavy metals showed strong variability(CV>65%)owing to human interference. The distribution of Pb and Cu pollution were predominantly influenced by industrial production and land development for construction purposes, whereas industrial activities, agricultural practices, and transportation served as the primary sources of Cd contamination. On the other hand, industrial construction emerged as the major factor contributing to Hg pollution. The average values of individual potential ecological risk index for heavy metals of 9.716 (Pb), 7.095 (Cu), 92.292 (Cd), and 142.469 (Hg), coupled with the regional comprehensive potential ecological risk index (RI) average of 251.573, signified that the region was overall characterized by a relatively high potential ecological risk status. The overall potential ecological risk for Pb and Cu in the region were mild, whereas Cd and Hg posed moderate to high risks, indicating that Cd and Hg were the dominant driving factors behind regional heavy metal pollution. The evaluation results of the information diffusion model based on the potential ecological risk indicated that the probability ranking of different levels of comprehensive potential ecological risk was as follows:slightly high (38.98%) > moderate (38.55%) > high (5.89%) > slight (5.15%) > extremely high (3.56%). The exceeding probabilities of potential ecological risk levels for Cd and Hg were significantly higher than those for Pb and Cu. The exceeding probability of different pollution levels of Hg were slight (94.89%), moderate (66.85%), slightly high (23.62%), high (3.9%), and extremely high (2%), of which only the surpassing probability of the slight level was lower than that of Cd. The prediction error of pollution probability of each potential ecological risk level was less than 5%, demonstrating the reliability of the information diffusion model based on the risk assessment. This research will provide technical reference and support for the monitoring and management of potential ecological risks from soil heavy metals in limited sample data regions.

10.
J Med Internet Res ; 26: e40406, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457201

RESUMO

BACKGROUND: College athletes are a group often affected by anxiety. Few interventional studies have been conducted to address the anxiety issues in this population. OBJECTIVE: We conducted a mobile-delivered mindfulness intervention among college athletes to study its feasibility and efficacy in lowering their anxiety level and improving their mindfulness (measured by the Five Facet Mindfulness Questionnaire [FFMQ]). METHODS: In April 2019, we recruited 290 college athletes from a public university in Shanghai, China, and 288 of them were randomized into an intervention group and a control group (closed trial), with the former (n=150) receiving a therapist-guided, smartphone-delivered mindfulness-based intervention and the latter receiving mental health promotion messages (n=138). We offered in-person instructions during the orientation session for the intervention group in a classroom, with the therapist interacting with the participants on the smartphone platform later during the intervention. We used generalized linear modeling and the intent-to-treat approach to compare the 2 groups' outcomes in dispositional anxiety, precompetition anxiety, and anxiety during competition, plus the 5 dimensions of mindfulness (measured by the FFMQ). RESULTS: Our intent-to-treat analysis and generalized linear modeling found no significant difference in dispositional anxiety, precompetition anxiety, or anxiety during competition. Only the "observation" facet of mindfulness measures had a notable difference between the changes experienced by the 2 groups, whereby the intervention group had a net gain of .214 yet fell short of reaching statistical significance (P=.09). Participants who specialized in group sports had a higher level of anxiety (ß=.19; SE=.08), a lower level of "nonjudgemental inner experience" in FFMQ (ß=-.07; SE=.03), and a lower level of "nonreactivity" (ß=-.138; SE=.052) than those specializing in individual sports. CONCLUSIONS: No significant reduction in anxiety was detected in this study. Based on the participant feedback, the time availability for mindfulness practice and session attendance for these student athletes in an elite college could have compromised the intervention's effectiveness. Future interventions among this population could explore a more student-friendly time schedule (eg, avoid final exam time) or attempt to improve cognitive and scholastic outcomes. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR1900024449; https://www.chictr.org.cn/showproj.html?proj=40865.


Assuntos
Atenção Plena , Humanos , Atenção Plena/métodos , China , Estudantes/psicologia , Ansiedade/terapia , Ansiedade/psicologia , Atletas
11.
Ecology ; : e4285, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523437

RESUMO

Although herbivores are well known to incur positive density-dependent damage and mortality, thereby likely shaping plant community assembly, the response of belowground root feeders to changes in plant density has seldom been addressed. Locally rare plant species (with lower plant biomass per area) are often smaller with shallower roots than common species (with higher plant biomass per area) in competition-intensive grasslands. Likewise, root feeders are often distributed in the upper soil layers. We hypothesized, therefore, that root feeders would incur negative density (biomass)-dependent damage across plant species. To test this hypothesis, we investigated the diversity and abundance of plant and root feeder species in an alpine meadow and determined the diet of the root feeders using metabarcoding. Across all species, root feeder load decreased with increasing aboveground plant biomass, root biomass, and total plant biomass per area, indicating a negative density dependence of damage across plant species. Aboveground plant biomass per area increased with increasing individual plant biomass and root depth per area across species, suggesting that rare plant species were smaller in size and had shallower root systems compared to common plant species. Both root biomass per area and root feeder biomass per area decreased with soil depth, but the root feeder biomass decreased disproportionately faster compared to root biomass with increasing root depth. Root feeder load decreased with increasing root depth but was not correlated with the feeding preference of root feeder species. Moreover, the prediction derived from a random process incorporating vertical distributions of root biomass and root feeder biomass significantly accounted for interspecific variation in root feeder load. In conclusion, the data indicate that root feeders incur negative density-dependent damage across plant species. On this basis, we suggest that manipulative experiments should be conducted to determine the effect of the negative density-dependent damage on plant community structure and that different types of plant-animal interactions should be concurrently examined to fully understand the effect of plant density on overall herbivore damage across plant species.

13.
Front Genet ; 15: 1302554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425715

RESUMO

Introduction: The Tibetan antelope (Pantholops hodgsonii) is a remarkable mammal thriving in the extreme Qinghai-Tibet Plateau conditions. Despite the availability of its genome sequence, limitations in the scaffold-level assembly have hindered a comprehensive understanding of its genomics. Moreover, comparative analyses with other Bovidae species are lacking, along with insights into genome rearrangements in the Tibetan antelope. Methods: Addressing these gaps, we present a multifaceted approach by refining the Tibetan Antelope genome through linkage disequilibrium analysis with data from 15 newly sequenced samples. Results: The scaffold N50 of the refined reference is 3.2 Mbp, surpassing the previous version by 1.15-fold. Our annotation analysis resulted in 50,750 genes, encompassing 29,324 novel genes not previously study. Comparative analyses reveal 182 unique rearrangements within the scaffolds, contributing to our understanding of evolutionary dynamics and species-specific adaptations. Furthermore, by conducting detailed genomic comparisons and reconstructing rearrangements, we have successfully pioneered the reconstruction of the X-chromosome in the Tibetan antelope. Discussion: This effort enhances our comprehension of the genomic landscape of this species.

14.
Cancer Lett ; 589: 216832, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537774

RESUMO

Yes-associated protein (YAP) is an essential driver of hepatocellular carcinoma (HCC) progression and the ubiquitin-proteasome system controls its abundance. However, the role of ubiquitin-specific protease 40 (USP40) in YAP stability remains unclear. Here, USP40 was first identified as a novel regulator of YAP abundance and its target genes in HCC cells. USP40 interacted with YAP to remove the lysine 48 (K48)-linked polyubiquitination of YAP at K252 and K315 sites, thereby maintaining YAP stability. USP40 facilitated the proliferation, colony formation, migration and spheroid formation of HCC cells in vitro and promoted HCC growth in vivo in a YAP-dependent manner. In turn, YAP transcriptionally activated USP40 expression in HCC cells. RNA sequencing analysis showed that about 37% of USP40-regulated genes overlapped with YAP-regulated genes. Interestingly, stiffness-induced USP40 upregulation was abolished by YAP knockdown, and USP40 knockdown attenuated stiffness-induced YAP accumulation in HCC cells. Clinical data demonstrated that USP40 was positively associated with YAP expression in HCC tissues and its high expression indicated a poor prognosis. In conclusion, the USP40/YAP positive feedback loop contributes to HCC progression, suggesting that USP40 may be a promising drug target for anti-HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Retroalimentação , Proteínas de Sinalização YAP , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células
15.
Langmuir ; 40(14): 7733-7746, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38538620

RESUMO

The mechanism of ethanol-induced fibrillation of ß-lactoglobulin (ß-lg) in the acidic aqueous solution upon heating was investigated using various techniques, mainly thioflavin T fluorescence, atomic force microscopy, nonreducing electrophoresis, mass spectrometry, Fourier transform infrared spectroscopy, and circular dichroism spectroscopy. The results showed that fibrillation occurred with a heating time increase, but high ethanol content slowed down the process. At a low ethanol volume fraction, peptides existed after heating for 2 h, with long and straight fibrils formed after 4-6 h, while at a high ethanol volume fraction, the proteins aggregated with very few peptides appeared at the early stage of heating, and short and curved fibrils formed after heating for 8 h. Ethanol weakened the hydrophobic interactions between proteins in the aqueous solution; therefore the latter could not completely balance the electrostatic repulsion, and thus suppressing the fibrillation process. It is believed that the fibrillation of ß-lg in the acidic solution upon heating is mainly dominated by the polypeptide model; however, ethanol inhibited the hydrolysis of proteins, and the self-assembly mechanism changed to the monomer model.


Assuntos
Lactoglobulinas , Água , Solventes/química , Lactoglobulinas/química , Peptídeos , Etanol , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia de Força Atômica , Dicroísmo Circular
16.
Int Wound J ; 21(3): e14804, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38385817

RESUMO

The process of wound healing in the dental pulp is characterized by intricate interplay of signalling cascades, cellular responses, and extracellular matrix (ECM). The objective of this research was to examine the intricate interaction between signalling cascades, cellular responses, and extracellular matrix (ECM) dynamics that comprise the wound healing process of dental pulp. We conducted a controlled laboratory analysis of transcriptomic landscape of dental pulp tissues, including both healthy and inflamed samples, utilizing single-cell RNA sequencing. We identified significant change in cellular composition under carious conditions by analysing samples from 50 patients. Specifically, the proportion of immune cells increased from 25% to 40%, while the proportion of fibroblasts decreased from 20% to 10%. A transition towards ECM remodelling and fibrosis was indicated by this change. In addition, substantial increase inexpression of critical genes including COL1A1, FN1, IL-1B, IL-6 and TNC was detected, indicating that the extracellular matrix (ECM) was actively remodelled and that a robust inflammatory response was present, both of which are vital for tissue repair. Increased cell-cell interactions among B cells, plasma cells, macrophages and MSCs, and fibroblasts were highlighted in our study, demonstrating the intricate cellular dynamics that occur in response to dental pulp injury. The knowledge gained regarding the cellular and molecular processes underlying pulp wound healing contributed to the advancement of knowledge regarding pulp pathology and regeneration. Moreover, it established a foundation for creation of targeted therapeutic interventions that seek to maximize pulp repair and regeneration. This study represented noteworthy achievement in the field of dental surgery, establishing a solid groundwork for subsequent investigations into regenerative medicine, wound healing, and dental tissue restoration.


Assuntos
Polpa Dentária , Perfilação da Expressão Gênica , Humanos , Nível de Saúde , Fibroblastos , Análise de Sequência de RNA
17.
J Colloid Interface Sci ; 662: 276-288, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354555

RESUMO

An emerging approach that employs both light and vibration energy on binary photo-/piezoelectric semiconductor materials for efficient hydrogen (H2) evolution has garnered considerable attention. ZnIn2S4 (ZIS) is recognized as a promising visible-light-activated photocatalyst. However, its effectiveness is constraint by the slow separation dynamics of photoexcited carriers. Density functional theory (DFT) predictions have shown that the integration of piezoelectric BiFeO3 (BFO) is conducive to the reduction of the H2 adsorption free energy (ΔGH*) for the photocatalytic H2 evolution reaction, thereby enhancing the reaction kinetics. Informed by theoretical predictions, piezoelectric BFO polyhedron particles were successfully synthesized and incorporated with ZIS nanoflowers to create a ZIS/BFO heterojunction using an ultrasonic-assisted calcination method. When subjected to simultaneous ultrasonic treatment and visible-light irradiation, the optimal ZIS/BFO piezoelectric enhanced (piezo-enhanced) heterojunction exhibited a piezoelectric photocatalytic (piezo-photocatalytic) H2 evolution rate approximately 6.6 times higher than that of pristine ZIS and about 3.0 times greater than the rate achieved under light-only conditions. Moreover, based on theoretical predictions and experimental results, a plausible mechanism and charge transfer route for the enhancement of piezo-photocatalytic performance were studied by the subsequent piezoelectric force microscopy (PFM) measurements and DFT calculations. The findings of this study strongly confirm that both the internal electric field of the step-scheme (S-Scheme) heterojunction and the alternating piezoelectric field generated by the vibration of BFO can enhance the transportation and separation of electron-hole pairs. This study presents a concept for the multipath utilization of light and vibrational energy to harness renewable energy from the environment.

18.
Science ; 383(6683): 639-645, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38330109

RESUMO

Coarse columnar grains and heterogeneously distributed phases commonly form in metallic alloys produced by three-dimensional (3D) printing and are often considered undesirable because they can impart nonuniform and inferior mechanical properties. We demonstrate a design strategy to unlock consistent and enhanced properties directly from 3D printing. Using Ti-5Al-5Mo-5V-3Cr as a model alloy, we show that adding molybdenum (Mo) nanoparticles promotes grain refinement during solidification and suppresses the formation of phase heterogeneities during solid-state thermal cycling. The microstructural change because of the bifunctional additive results in uniform mechanical properties and simultaneous enhancement of both strength and ductility. We demonstrate how this alloy can be modified by a single component to address unfavorable microstructures, providing a pathway to achieve desirable mechanical characteristics directly from 3D printing.

19.
Front Immunol ; 15: 1299484, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380329

RESUMO

Introduction: Peanut allergy is an immunoglobulin E (IgE) mediated food allergy. Rubia cordifolia L. (R. cordifolia), a Chinese herbal medicine, protects against peanut-induced anaphylaxis by suppressing IgE production in vivo. This study aims to identify IgE-inhibitory compounds from the water extract of R. cordifolia and investigate the underlying mechanisms using in vitro and in vivo models. Methods: Compounds were isolated from R. cordifolia water extract and their bioactivity on IgE production was assessed using a human myeloma U266 cell line. The purified active compound, xanthopurpurin (XPP), was identified by LC-MS and NMR. Peanut-allergic C3H/HeJ mice were orally administered with or without XPP at 200µg or 400µg per mouse per day for 4 weeks. Serum peanut-specific IgE levels, symptom scores, body temperatures, and plasma histamine levels were measured at challenge. Cytokines in splenocyte cultures were determined by ELISA, and IgE + B cells were analyzed by flow cytometry. Acute and sub-chronic toxicity were evaluated. IL-4 promoter DNA methylation, RNA-Seq, and qPCR analysis were performed to determine the regulatory mechanisms of XPP. Results: XPP significantly and dose-dependently suppressed the IgE production in U266 cells. XPP significantly reduced peanut-specific IgE (>80%, p <0.01), and plasma histamine levels and protected the mice against peanut-allergic reactions in both early and late treatment experiments (p < 0.05, n=9). XPP showed a strong protective effect even 5 weeks after discontinuing the treatment. XPP significantly reduced the IL-4 level without affecting IgG or IgA and IFN-γ production. Flow cytometry data showed that XPP reduced peripheral and bone marrow IgE + B cells compared to the untreated group. XPP increased IL-4 promoter methylation. RNA-Seq and RT-PCR experiments revealed that XPP regulated the gene expression of CCND1, DUSP4, SDC1, ETS1, PTPRC, and IL6R, which are related to plasma cell IgE production. All safety testing results were in the normal range. Conclusions: XPP successfully protected peanut-allergic mice against peanut anaphylaxis by suppressing IgE production. XPP suppresses murine IgE-producing B cell numbers and inhibits IgE production and associated genes in human plasma cells. XPP may be a potential therapy for IgE-mediated food allergy.


Assuntos
Anafilaxia , Hipersensibilidade Alimentar , Hipersensibilidade a Amendoim , Camundongos , Humanos , Animais , Hipersensibilidade a Amendoim/terapia , Anafilaxia/prevenção & controle , Histamina , Interleucina-4 , Medula Óssea , Camundongos Endogâmicos C3H , Imunoglobulina E , Água
20.
Front Immunol ; 15: 1323174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38415255

RESUMO

Background: The systemic immune-inflammation index (SII) and systemic inflammation response index (SIRI) are both novel biomarkers and predictors of inflammation. Psoriasis is a skin disease characterized by chronic inflammation. This study aimed to investigate the potential association between SII, SIRI, and adult psoriasis. Methods: Data of adults aged 20 to 80 years from the National Health and Nutrition Examination Survey (NHANES) (2003-2006, 2009-2014) were utilized. The K-means method was used to group SII and SIRI into low, medium, and high-level clusters. Additionally, SII or SIRI levels were categorized into three groups: low (1st-3rd quintiles), medium (4th quintile), and high (5th quintile). The association between SII-SIRI pattern, SII or SIRI individually, and psoriasis was assessed using multivariate logistic regression models. The results were presented as odds ratios (ORs) and confidence intervals (CIs). Restricted cubic spline (RCS) regression, subgroup, and interaction analyses were also conducted to explore the potential non-linear and independent relationships between natural log-transformed SII (lnSII) levels or SIRI levels and psoriasis, respectively. Results: Of the 18208 adults included in the study, 511 (2.81%) were diagnosed with psoriasis. Compared to the low-level group of the SII-SIRI pattern, participants in the medium-level group had a significantly higher risk for psoriasis (OR = 1.40, 95% CI: 1.09, 1.81, p-trend = 0.0031). In the analysis of SII or SIRI individually, both SII and SIRI were found to be positively associated with the risk of psoriasis (high vs. low group OR = 1.52, 95% CI: 1.18, 1.95, p-trend = 0.0014; OR = 1.48, 95% CI: 1.12, 1.95, p-trend = 0.007, respectively). Non-linear relationships were observed between lnSII/SIRI and psoriasis (both p-values for overall < 0.05, p-values for nonlinearity < 0.05). The association between SII levels and psoriasis was stronger in females, obese individuals, people with type 2 diabetes, and those without hypercholesterolemia. Conclusion: We observed positive associations between SII-SIRI pattern, SII, SIRI, and psoriasis among U.S. adults. Further well-designed studies are needed to gain a better understanding of these findings.


Assuntos
Diabetes Mellitus Tipo 2 , Psoríase , Adulto , Feminino , Humanos , Inquéritos Nutricionais , Interpretação Estatística de Dados , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...